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Abstract: Recent theoretical work [1], [2], [3], [4] proposes a quantum
aspect of geometry, with position operators obeying the commutator
[Xi, Xj] = ı̇`′PεijkXk. This leads to an uncertainty in transverse dis-
tance after propagating a distance D of 〈x2

⊥〉 = L`′P with l′P ∼ the
Planck length. The Fermilab Holometer consists of two Michelson in-
terferometers which search for macroscopic effects of this uncertainty.

Motivation

Reconciling the pillars of modern physics is not a new venture, but we pro-
pose here a new approach: to treat locations in spacetime with quantum
operators. General relativity describes the dynamics of spacetime: Lorentz
contraction, gravitation, and the accelerated expansion of the Universe.
Using quantum operators for location may help us understand regimes
where relativity and quantum mechanics meet.

Among several systems of natural units discussed by K. A. Tomlin [5]
the Planck system most clearly describes this meeting place. From three
physical constants c, h̄, G, we derive:

Length: `P =

√
h̄G
c3 = 1.6× 10−35 meters (1)

Time: tP =

√
h̄G
c5 = 5.4× 10−44 seconds (2)

Mass: mP =

√
h̄c
G

= 2.2× 10−8 kilograms (3)
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Figure 1: The size/energy relations for Quantum Mechanics and Relativity.
The red dot indicates the scales where their effects are comparable.
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A motivation for the theoretical work stems from the contrasting trend
of size as a function of energy for relativity and quantum mechanics. Fig-
ure 1 illustrates this for the radius of a black hole r = 2Gm/c2 and the
wavelength of a photon λ = hc/E. Regions below these lines are forbid-
den. For example, an object with the mass of Sag A∗ (the black hole at the
center of the Milky Way) 1036 kg, has a minimum possible radius∼ 1012 m.
A higher density (smaller radius for this mass) is not allowed by general
relativity. On the other side of Figure 1 we have a “large” photon with fre-
quency of 60 Hz. This wavelength is approximately the size of the Earth.
Green photons (higher energy) have shorter wavelengths. Small particles
with non-zero rest mass, such as water molecules, protons, or the recently-
discovered Higgs boson, lie slightly above the λ = hc/E line. The region
below this line is forbidden by quantum mechanics. The two lines meet at
an E/c2 equal to the Planck mass 2.2× 10−8 kg. Objects can have have a
mass higher or lower than this mass. However, the length associated with
this mass is identical for quantum mechanics and relativity: for a Planck
mass λ = hc/E and r = 2Gm/c2 are both the Planck length, 1.6× 10−35

meters. The Planck length is a fundamental length scale.
A second motivation for the new theoretical ideas comes from thermo-

dynamics. The entropy of a system measures the number of ways that it
could be arranged. As a system evolves in time entropy increases. Hawk-
ing noted [6] that the event horizon area of a black hole cannot decrease.
Since this is similar to how entropy behaves, the simplest assumption is
that the entropy of a black hole (SBH) increases as the area of its event hori-
zon. Beckenstein and Hawking worked out the constant of proportionality
[7], defining the entropy of a black hole (or Beckenstein-Hawking entropy)
to be

SBH = 4π(R/2`P)
2 (4)

Naively, we expect the number of ways to organize things inside a re-
gion to increase as the volume of the region. Note here the surprise that it
increases only as the surface area of the region: there are not as many ways
to arrange a black hole as one might initially think.

The holographic principle generalizes from the special case of black
holes to any region of space, described by Bousso [8]. A calculation by
Verlinde [9] give the number of states in a sphere:

NG(R) = 4π(R/`P)
2. (5)

Note that in Equations 4 and 5, the area of the surface that surrounds the
region is expressed in units of the fundamental Planck length `P squared.
Gerard ’t Hooft describes the situation: “Nature’s book keeping system: the

3



THE FERMILAB HOLOMETER

data can be written onto a surface, and the pen with which the data are written
has a finite size.”[10]

The third motivation of these theoretical ideas are considerations of ge-
ometry. Classical geometry is based on notions of points in space: local-
ity is presumed. It is paradoxical, then, to use this geometry in quantum
physics, which does not ascribe events to definite points. How does geom-
etry work for quantum measurements? A standard architecture of physics
has a dynamic spacetime which responds to particles and fields. These
quantum particles and fields are defined on the “stage” of classical geom-
etry. This accommodation explains all quantum mechanics (fundamental
particle physics) experiments, as well as observations of the dynamics of
spacetime, such as gravitational lensing (the deflection of light by mass)
and spin-down of pulsars which are observed to lose energy at the rate
predicted by gravitational radiation.

This collision of quantum mechanics and relativity leads us to consider
a new part of the story. We will treat spacetime as a statistical behavior
of a quantum system, and realize that states have new forms of spatially
nonlocal entanglement.

Hypothesis

These considerations lead us to describe location with an operator which
has the following commutator:

[Xµ, Xν] = ı̇XκUλεµνκλ`
′
P (6)

X are Hermitian operators on ”bodies.” By this we mean objects with large
mass so the effects of standard quantum mechanics are negligible com-
pared to those of this new commutator. We also require that the separation
between bodies be large enough for the effects of curved spacetime to be
negligible. The eigenvalue of X is the location x. U is 4-velocity: ∂X/c∂t,
and εµνκλ is antisymmetric 4-Tensor. The form is covariant and describes
the quantum relationship between two timelike trajectories.

In the rest frame, the commutator simplifies to

[Xi, Xj] = ı̇Xkεijk`
′
P (7)

This Planck scale quantum algebra for position operators in three di-
mensions is similar to the angular momentum algebra, with x in place of J
and leads to uncertainty in transverse position after propagating distance
D:
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〈x2
⊥〉 = D`′P (8)

The uncertainty increases with separation D. This “new” quantum de-
parture from classical geometry is purely transverse to the propagation
direction.

Figure 2: For two objects separated by distance D along the z axis, the
transverse uncertainty (in x and y) given by Equation 8 is 〈x2

⊥〉 = D`′P. In
the Fermilab Holometer we treat the propagation of a photon state in this
fashion. Uncertainty in the transverse position at the beam splitter leads
to fluctuations in the signal at the dark port which we call “Holographic
noise.”

Normalization

We have used the primed variable `′P as the relevant scale for this new
uncertainty due to quantum geometry. Calculating the number of degrees
of freedom for two bodies confined inside a sphere of radius R allows us
to express `′P in terms of `P, the Planck length of Equation 1.

Define the state |d〉 as two bodies separated by distance D = d`′P. Then

|X|2|d〉 = d(d + 1)`′P
2|d〉. (9)

Consider the separation between two objects, as in Figure 2. For a given
separation D, there are 2d + 1 states.
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In a sphere, values d are allowed such that 0 ≤ d ≤ R/`′P. Each one of
these has 2d + 1 states. So the number of states in a 3-sphere of radius R is

N3S = ∑R/`′P
d=0 2d + 1 = d(d + 1)→ (R/`′P)

2 (10)

for R� `′P.

For the same sphere Verlinde [9] calculates the number of states. Equat-
ing the results of Equations 10 and 5 yields

`′P = `P/2
√

π, (11)

where `P is the standard Planck length, 1.6× 10−35 meters. The normaliza-
tion is a parameter-free prediction of the magnitude of this effect.

Macroscopic Effect

Consider an interferometer in the coordinate system of Figure 3. The in-
put beam enters an interferometer in the positive x1 direction and inter-
acts with the beam splitter located at the origin. The photon state splits,
propagates in the positive x1 and x2 directions, interacts with the two end
mirrors (located at distances D1 and D2 on the two axes) and returns in the
negative x1 and x2 directions, recombining at the beam splitter.

The probability that the combined state propagates in the negative x1
direction or the negative x2 direction depends on the path length difference
∆ ≡ D2 − D1. 〈x2

⊥〉 for the two propagation directions changes ∆ with a
variance of

σ2
∆ = NV〈x2

⊥〉 = NV D`′P. (12)

We use Equation 8 to account for the error in distance in one direction
(x1, for example) due to the perpendicular uncertainty in the other direc-
tion (x2). The factor NV may be either 1 or 2, and we leave it as a parameter
here.

The detector measures photons which exit the interferometer in the
negative x2 direction. The raw data collected is the time series of volt-
ages. (For the Fermilab Holometer, we sample at 100 MHz.) From the
optical wavelength and response of the photo detectors, we convert these
voltages to a series of measurements of ∆[meters] as a function of time.

We treat ∆(t) as a stationary random process and adopt the notation of
Bendat and Piersol [11] section 5.1.1. The autocorrelation function for ∆(t)
is

R∆∆(τ) = E[(∆(t))(∆(t + τ))] (13)

where E[] is the expected value of the function.
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Figure 3: Coordinate system for one interferometer, top view. For the Fer-
milab Holometer, x̂1 is the Easting direction, x̂2 is the Northing direction,
and x̂3 is up. The path length difference ∆ ≡ D2 − D1 is controlled at low
frequencies to ”lock” the interferometer at a constant power output to the
detector. Holographic noise adds additional uncertainty to the measure-
ment of ∆, with the variance σ2

∆ given by Equation (12)

At zero time lag the autocorrelation function is the variance, given by
Bendat and Piersol [11] Equations 5.4 and 5.8 with mean value of zero:

R∆∆(τ = 0) = σ2
∆ (14)

= NV D`′P. (15)

Define a critical time lag τc such that R∆∆(τ) is zero for τ ≥ τc. We also
propose linear interpolation between τ = 0 and τ = τc:

R∆∆(τ) = (1− |τ|/τc)NV D`′P for 0 ≤ |τ| ≤ τc (16)
= 0 for τc < |τ|.

Note that for a stationary random process, R∆∆(τ) = R∆∆(−τ).
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Figure 4: Relation between the autocorrelation function and power spectral
density for Holographic noise.

The critical time lag is related to the time of flight of the photon state
in the interferometer. For the round trip between beam splitter and end
mirror, τc = 2D/c. However, the transverse position error may depend
only on the propagation from the end mirror to the beam splitter, so we
define

τc = Nτ D/c (17)

The factor Nτ is either 1 or 2, depending on whether the transverse position
error depends on propagation from the end mirror to the beam splitter, or
the entire round trip, respectively.

Signal to Noise Ratio: One Interferometer

Starting with the autocorrelation function of Equation 16 we use standard
signal processing techniques to calculate the signal to noise ratio.

Following Bendat and Piersol [11] eq. 5.34, the one-sided autospectral
density function (power spectral density) ΞH( f ) is the cosine transform of
R∆∆(τ). Here we use the superscript H to designate the Holographic noise.
Later, we will use superscript P to designate photon noise with Poisson
statistics, the dominant background to measuring Holographic noise.

ΞH( f ) =4
∫ ∞

0
R∆∆(τ) cos(2π f τ) dτ (18)

=4`′PNV D
∫ τc

0
(1− τ/τc) cos(2π f τ) dτ (19)

=
`′PNV D

π2τc

1
f 2 (1− cos(2π f τc)) (20)
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The low-frequency limit (using l’Hôpital’s rule) is

lim
f→0

ΞH( f ) =
`′PNV D

π2τc
lim
f→0

1
f 2 (1− cos(2π f / fc)) (21)

=
NV Nτ`PD2

c
√

π
(22)

For frequencies > 10 kHz background noise is dominated by photon
statistics which, for laser light, follows Poisson statistics[12]. Increasing the
number of photons per second reduces the Poisson noise contributions to
σ∆. For a Poisson process with rate ṅ photons/second, the power spectrum
of the relative intensity is

φ( f )Poisson =

√
1
ṅ

Radians/
√

Hz (23)

=

√
Eγ

PBS
Radians/

√
Hz (24)

Expressed as root-mean square fluctuation in ∆[meters]:

√
ΞP( f ) =

√
hcλγ

4π2PBS
meters/

√
Hz. (25)

This is white noise, constant at all frequencies. Compare this to the shape
of Holographic noise in Figure 4.

To estimate the integration time we need to distinguish Holographic
noise from Poisson noise. Calculate the Signal to Noise ratio for f → 0.

S/N =

√
ΞH( f→0)√

ΞP( f )
= D

√
`PPBS

λγ

√
NV Nτ

2π3/4

c
√

h
(26)

Each of the interferometers in the Fermilab Holometer has these param-
eters:

D =40 meters (Arm Length) (27)

λγ =1.064× 10−6 meters (wavelength of infrared laser) (28)

PBS =1× 103 watts (Power on Beam Splitter). (29)
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For this design and assuming NV = 2 and Nτ = 2, the above quantities
are √

ΞH( f → 0) =1.39× 10−20 meters/
√

Hz (30)√
ΞP( f ) =1.64× 10−18 meters/

√
Hz (31)

S/N =0.6% (32)

One way to improve the S/N ratio is to increase the power on the beam
splitter PBS. At more than several kilowatts, however, thermal distortions
on the beam splitter limit the performance of the interferometer. A second
way to improve S/N is increasing the arm length D also. However, even
with the length of the most ambitious optical interferometers (for example,
LIGO [13] has D = 4 km) the S/N ratio is still < 1.

Signal to Noise Ratio: Correlation of Two Interferometers

We improve the S/N ratio by measuring ∆(t) for two independent inter-
ferometers. ΞO

0,1 is the observed cross correlation of the two time streams
∆0(t) and ∆1(t), with:

ΞO
0,1( f ) = ΞH

0,1( f ) + ΞP
0,1( f ) (33)

Why is Holographic noise correlated? Figure 5 shows two configura-
tions we use to probe Holographic noise. Each photon measures ∆ for an
interferometer. The variations in ∆ we are concerned with are not a prop-
erty of the photon, or of the interferometer’s mirrors, but rather are due
to the measurement of the location (x1 and x2) of the beam splitter by the
photon state. Our conjecture is that this is a property of spacetime in which
measurements occur. For the nested configuration, the two interferometers
are embedded in the same volume of spacetime, so the fluctuations in ∆0
are correlated with fluctuations in ∆1. In the nested configuration the sep-
aration between the two interferometers (0.6 meters)� D = 40 meters so
for these estimates of the S/N ratio we set the correlation coefficient to 1.

Our experiment allows us to switch between the ”nested” and the
”back-to-back” configurations. For this we do not need to move the elec-
tronics, detectors, digitizers, or computers. The only change in the optics
is the rotation of one beam splitter by 90 degrees, and the use of a different
end mirror in one of the interferometers. The modulation of the correla-
tion coefficient between the two configuration of Figure 5 is an important
signature of Holographic noise.
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The power spectrum ΞH( f ) is the same for the two interferometers. The
cross correlation of Holographic noise is

ΞH
0,1( f ) = ΞH( f ) (34)

where ΞH( f ) is given by Equation 20 for all f with the low-frequency limit
of Equation 22.

Figure 5: Configurations of two interferometers in the Fermilab Holometer.
We measure ∆(t) for the two interferometers independently and calculate
the cross correlation ΞO

(0,1) of ∆0(t) and ∆1(t). For clarity in this diagram,
we show the separation between interferometers expanded by a factor of
ten.

The Poisson noise in the two interferometers is uncorrelated. Separate
lasers feed each interferometer, and we keep the two light paths completely
isolated. We average the cross correlation for NS independent samples. The
sampling time tS is the time between independent samples, the round trip
time of flight 2D/c. For an integration time tI we have

NS = tI/tS (35)

In calculating the average, each term of the sum has the same mag-
nitude, but random phase. For a random walk in two dimensions, after
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N unit-length steps, the root mean square of the distance traveled [14] is
|z|RMS =

√
N. The average cross correlation of the Poisson noise is

ΞP
0,1( f ) = ΞP( f )/

√
NS. (36)

Now we find the integration time TI by equating the cross correlations
of the Poisson noise and Holographic noise.

ΞP
0,1( f ) = ΞH

0,1( f → 0) (37)

ΞP( f )/
√

NS = ΞH( f → 0) (38)√
2D
cTI

hcλγ

4π2PBS
= NV Nτ`PD2

c
√

π
(39)

Solving for TI:

TI =

(
λ2

P2
BSD3

)(
1

N2
V N2

τ

)(
1
`2

P

)(
h2c3

8π3

)
(40)

The first term illustrates design strategies for the apparatus. Integration
time is reduced by laser power squared and by arm length cubed. It is
also reduced by a shorter laser wavelength squared, but we trade that off
with the ease of building power recycled interferometers in the infrared. In
the second term, we see the two factors NV and Nτ . In these calculations,
we set these both to 2. Interpretations which have these as 1 increases
the integration time by their product squared. Note that for Nτ = 1, the
critical frequency fc = 1/τc in Figure 4, Equation 17 changes by a factor
of two. The third term, Planck length squared, is powerful. Two chief
ideas behind the Fermilab Holometer overcome this scale: 〈x2

⊥〉 = D`′2P
and Holographic noise is coherent on length scales ∼ D. A large value
of D amplifies effects from the Plank length scales to macroscopic length
scales.

For the Fermilab Holometer, an integration time of 206 seconds
achieves a S/N ratio of one for the cross correlation between two inter-
ferometers. An important caveat is that this estimate does not include ad-
ditional noise due to imperfections in the optics of an interferometer or
misalignment. Our current activities will quantify and ameliorate these
effects.
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Summary

We have combined recent theoretical ideas and experience with operating
Michelson interferometers to design an experiment, the Fermilab Holome-
ter, which is sensitive to macroscopic effects predicted by quantum geom-
etry at the Planck length scale. This relies on ”new” theoretical ideas:

• measurement of the location of an object in two orthogonal directions
obeys a commutator [Xi, Xj] = ı̇Xkεijk`

′
P;

• considerations of entropy from the Holographic Principle and the
number states of separation of two bodies with with Holographic
uncertainty normalizes the length scale `′P = `P/2

√
π where `P =√

h̄G/c3 is the Planck length;

• Holographic uncertainty adds noise to measurements of the location
of the beam splitter in a Michelson interferometer;

• The autocorrelation function R∆∆(τ) for Holographic noise in one
interferometer falls from R∆∆(0) = σ2

∆ to 0 at τ = τc;

• Holographic noise of two co-located interferometers is correlated and
depends on the overlapping spacetime volume.

We have designed, assembled and are currently commissioning the Fer-
milab Holometer. We will be sensitive to the macroscopic effects of these
ideas:

• magnitude of the cross correlation;

• spectral shape of the cross correlation;

• modulation of the cross correlation with the configuration of the in-
terferometers.
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